

SUGGESTED SOLUTION

FINAL MAY 2019 EXAM

SUBJECT- AMA

Test Code – FNJ 7083

BRANCH - () (Date :)

Head Office : Shraddha, 3rd Floor, Near Chinai College, Andheri (E), Mumbai – 69. Tel : (022) 26836666

Answer 1: Statement Showing Standard Cost and Actual Cost of 320th Batch :

Standard Data			Actual Data			
Material		I			1	-
SQ	SP	$SQ \times SP$	AQ	AP		SP × AQ
62.07 kgs.(Refer R	S. 55	Rs. 3,414	80 Kgs.	Rs. 50.00	Rs. 4,000	Rs. 4,400
SH	SR	SH × SR	AH	AR	AH × AR	SR × AH
12.42 hours	Rs. 40	Rs. 497	20 hours	Rs. 50.00	Rs. 1,000	Rs. 800
(Refer W.N.2)						
Variable						
SH	SR	SH × SR	AH	AR	AH × AR	SR × AH
12.42 hours R	s. 75	Rs. 932	20 hours	Rs. 90.00	Rs. 1,800	Rs. 1500
(Refer W.N.2)						
Computation of Var	riances :				(1 mark * 9 =	9 marks)
Material Cost Varia	nce =	Standard M	laterial Cost –	Actual Materia	al Cost	
					-	
		= SQ	\times SP – AQ \times A	\ Ρ		
		= Rs.	3,414 – Rs. 4.0	000 = Rs. 586 (A)	
			-,,		1	
Material Usage Vari	iance	= Sta	ndard Cost o	of Standard C	Quantity – Sta	ndard cost of
		Quantity				
		= SQ	\times SP – AQ \times SI	Р		
		= Rs.	3,414 – Rs. 4,4	400 = Rs. 986 (A)	
Material Price Varia	nce	- Sta	ndard Cost of	Actual Quantit	ν – Actual Mat	erial Cost
		ota			.j nordan mar	
		= AQ	\times SP – AQ \times A	۱P		
		= Rs.	4,400 – Rs. 4.	000 = Rs. 400 (F)	
Labour Cost Marth		Chanada and O	oot of lok	A atural C = -1	, flabeur	
Labour Cost Varianc	:e =	Standard Co	ust of Labour -	- Actual Cost o	I Ladour	
		= SH	\times SR – AH \times A	R		
		= Rs.	497 – Rs. 1,00	00 = Rs. 503 (A)	I	
Labour Efficiency va	ariance	= Sta	ndard Cost of	Standard Time	e – Standard Co	est for Actual Tim
		= SH	imes SR – AH $ imes$ SI	R		
		= Rs.	497 – Rs. 800	= Rs. 303 (A)		
Labour Rate Variand	се	= Sta	ndard Cost for	r Actual Time –	Actual Cost of	Labour
		= AH	\times SR – AH \times A	R		
		= Rs.	800 – Rs. 1,00	00 = Rs. 200 (A)	1	
Variable Overhead (Cost Varia	nce =	Standard	Variable Over	heads for Prod	uction –
			Actual Va	ariable Overbe	ads	

		=	Rs. 932 – Rs. 1,800 = Rs. 868(A)	
Varia	ble Overhead Efficiency Va	ariance		
		=	Standard Variable Overheads for Production –	
			Budgeted Variable Overheads for Actual Hours	
		=	Rs. 932 – 20 Hours × Rs. 75	
		=	Rs. 568 (A)	
Varia	ble Overhead Expenditure	Varian	ice	
		=	Budgeted Variable Overheads for Actual Hours	-
			Actual Variable Overheads	
		=	20 Hours × Rs. 75 – Rs. 1,800	
		=	Rs. 300 (A)	
Work	ing Note :			
(1)	Working note showing	Standa	rd Quantity of Material for 320 th Batch.	(1.5 marks)
	Cumulative Number of E	Batches	= 320	
	Average Kgs. of Materia	l per ba	atch = $100 \times 320^{-0.074}$	
	$t = 100 \times 320^{-0.074}$			
	log t = log 100 – 0.074 ×	log 320)	
	log t = log 100 – 0.074 ×	log (2 >	$\times 2 \times 2 \times 2 \times 2 \times 2 \times 5)$	
	log t = log 100 – 0.074 ×	[log 2 ⁶	+ log 5]	
	log t = log 100 – 0.074 ×	[6log 2	2 + log 5]	
	$\log t = 2 - 0.074 \times [6 \times 0]{}$.30103	+ 0.69897]	
	log t = 1.81462			
	t = Antilog (1.81462)			
	t = 65.26			
	Cumulative Number of E	Batches	= 319	
	Average Kgs. of Materia	l per ba	atch = $100 \times 319^{-0.074}$	
	$t = 100 \times 319^{-0.074}$			
	log t = log 100 – 0.074 ×	log 319	9	
	log t = log 100 – 0.074 ×	log 319	9	
	$\log t = 2 - 0.074 \times 2.503$	79		

log t = 1.81472

t = Antilog (1.81472)

t = 65.27

Standard Quantity of Material for 320^{th} Batch = $320 \times 65.26 - 319 \times 65.27 = 62.07$ Kgs.

(2) Working note showing Standard Hours for 320th Batch.

(1.5 marks)

Cumulative Number of Batches = 320

Average Labour Hours Per batch = $100 \times 320^{-0.322}$

 $t = 100 \times 320^{-0.322}$

 $\log t = \log 100 - 0.322 \times \log 320$

- $\log t = \log 100 0.322 \times \log (2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 5)$
- $\log t = \log 100 0.322 \times [\log 2^6 + \log 5]$
- $\log t = \log 100 0.322 \times [6 \log 2 + \log 5]$
- $\log t = 2 0.322 \times [6 \times 0.30103 + 0.69897]$

log t = 1.19334

- t = Antilog (1.19334)
- t = 15.61

Cumulative Number of Batches = 319

Average Labour Hours per batch = $100 \times 319^{-0.322}$

 $t = 100 \times 319^{-0.322}$

 $\log t = \log 100 - 0.322 \times \log 319$

 $log \ t = 2 - 0.322 \times 2.50379$

log t = 1.19378

t = Antilog (1.19378)

t = 15.62

Standard Hours for 320^{th} Batch = $320 \times 15.61 - 319 \times 15.62 = 12.42$ hours

Answer 2:

Dummy machine (X_5) is inserted to make it a balanced cost matrix and assume its installation cost to be zero. Cost of install at cell X_3 (P) and X_2 (R) is very high marked as M.

	Р	Q	R	S	T
X 1	18	22	30	20	22
X2	24	18	М	20	18
X 3	М	22	28	22	14

X4	28	16	24	14	16
X₅ (Dummy)	0	0	0	0	0

(1 mark)

Step 1

Subtract the minimum element of each row from each element of that row-

	Р	Q	R	S	Т
X 1	0	4	12	2	4
X ₂	6	0	М	2	0
X ₃	М	8	14	8	0
X 4	14	2	10	0	2
X₅ (Dummy)	0	0	0	0	0

(1 mark)

Step 2

Subtract the minimum element of each column from each element of that column-

	Р	Q	R	S	Т
X ₁	0	4	12	2	4
X2	6	0	М	2	0
X ₃	М	8	14	8	0
X4	14	2	10	0	2
X₅ (Dummy)	0	0	0	0	0

(1 mark)

Step 3

Draw lines to connect the zeros as under-

	Р	Q	R	S	Т
X 1	Þ	1	12	2	1
X2	5	Þ	М	<u>}</u>)
X ₃	Л	3	14	}	D
X 4	14	2	10		2
X₅ (Dummy)	,	J	U)	J

There are five lines which are equal to the order of the matrix. Hence the solution is optimal. We may proceed to make the assignment as under-

	Р	Q	R	S	Т
X 1	0	4	12	2	4
X ₂	6	0	М	2	0
X ₃	М	8	14	8	0
X4	14	2	10	0	2
X₅ (Dummy)	0	0	0	0	0

(1 mark)

Machines	Location	Costs (Rs.)
X ₁	Р	18
X ₂	Q	18
X ₃	Т	14
X4	S	14
X₅ (Dummy)	R	0
	Total	64

(1 mark)

Answer 3:

Let x be the number of programmes of T.V. advertising and y denote the number of programmes of radio advertising.

Objective function:

One T.V. programme reaches 7,50,000 customers in target audience A and 1,50,000 customers in target audience B, whereas one radio programme reaches 40,000 customers in target audience A and 2,60,000 in target audience B. Since the advertising firm desires to determine the media mix to maximise the total reach, the objective function in given by

Maximise Z = (7,50,000 + 1,50,000) x + (40,000 + 2,60,000) y*Or* Z = 9,00,000x + 3,00,000y

Condition-1:

One programme of T.V. advertising costs Rs. 50,000 and that of Radio advertising cots Rs. 20,000. The total advertising budget is Rs.

2,00,000. Hence, $50,000x + 20,000y \le 2,00,000$ Or $5x + 2y \le 20$

Condition-2:

Contract conditions require that there should be at least 3 programmes on T.V. and the number of programmes on Radio must not exceed 5.

Therefore, $x \ge 3$ $y \le 5$

The linear programming model for the given problem is:

Maximise Z = 9,00,000x + 3,00,000ySubject to the Constraints: $5x + 2y \le 20$ $X \ge 3$ $Y \le 5$

Where $x, y \ge 0$

(2.5 marks)

Answer 4:

Allocation of Random Numbers Demand (units)

location of Random Numbers Demand (units)					
Units	Probability	Cumulative Probability	Random Nos.		
10,000	0.20	0.20	00 – 19		
20,000	0.25	0.45	20 – 44		
30,000	0.30	0.75	45 – 74		
40,000	0.25	1.00	75 – 99		

Contribution per unit

Rs.	Probability	Cumulative Probability	Random Nos.
25	0.25	0.25	00 – 24
35	0.30	0.55	25 – 54
45	0.35	0.90	55 – 89
55	0.10	1.00	90 - 99

Advertising Cost

Rs.	Probability	Cumulative Probability	Random Nos.
50,000	0.22	0.22	00 – 21
60,000	0.33	0.55	22 – 54
70,000	0.44	0.99	55 – 98

(1 mark)

(1 mark)

7 | P a g e

	80,000	0.01	1.00	99 – 99	
In	vestment				(1 mark)
	Rs.	Probability	Cumulative Probability	Random Nos.	

50,00,000	0.10	0.10	00 – 09
55,00,000	0.30	0.40	10 – 39
60,00,000	0.45	0.85	40 – 84
65,00,000	0.15	1.00	85 – 99

Simulation Table

Random Number	Demand Units	Contribution Per unit (Rs.)	Adv. Cost (Rs.)	Return (Rs.)	Investment (Rs.)	Return on Investment
09, 24, 85, 07	10,000	25	70,000	1,80,000	50,00,000	3.60%
84, 38, 16, 48	40,000	35	50,000	13,50,000	60,00,000	22.50%
41, 73, 54, 57	20,000	45	60,000	8,40,000	60,00,000	14.00%
92, 07, 99, 64	40,000	25	80,000	9,20,000	60,00,000	15.33%
65, 04, 78, 72	30,000	25	70,000	6,80,000	60,00,000	11.33%

Highest Likely Return is 22.50% relating to trial 2.

Answer 5:

(a) Workings

Activity	Duration	EST	EFT	LST	LFT	Total Float
	Dij	Ei	Ei+Dij	Lj-Dij	Lj	LST-est
Α	5	0	5	0	5	0
В	6	0	6	6	12	6
С	4	5	9	8	12	3
D	3	5	8	7	10	2
E	1	5	6	5	6	0
F	4	6	10	6	10	0
G	14	10	24	10	24	0
Н	12	9	21	12	24	3
Ι	2	24	26	24	26	0

(3 marks)

(i) The critical path is the series of activities within the network with *zero total float*. Accordingly, Critical Path is A–E–F–G–I with duration of 26 Days. (1 mark)

(ii) Project Crashing:

Step1: Crash Activity A by 1 Day; Crashing Cost Rs. 1,000/- Step2: Crash Activity F by 1 Day; Crashing Cost Rs. 6,000/- Step3: Crash Activity G by 1 Day; Crashing Cost Rs. 7,000/-

Activity E can not be crashed since ZERO duration is not possible.

(1 mark)

(3 marks)

Requireme	ent of Question				(5 marks)					
SI. No.										
(i)	Duration=		26 Days							
(ii)	LFT:									
		C:	12							
		D:	10							
		H:	24							
		В:	12							
(iii)	Step	Crash Activity	Days	Cost (Rs.)						
	I	А	1	1,000/-						
	II	F	1	6,000/-						
	III	G	1	7,000/-						
(iv)	Activity	I	Increase durat	tion by (days)						
	В		2 D	ays						
	С		0 D	ays						
Concept:	 B had a total float of 6 days. Due to 3 days crashing, float reduces by 3. Since B is succeeded by H, and duration of H is increased by 1, the dependent 1 float is to be reduced. Hence, float reduces by 4 days. Therefore, duration of B can be prolonged by 2 days. C had an original float of 3. It gained one more day due to crashing of A. It could start one day earlier. However, since it is succeeded by H, which had lost its 3 floats and increased 1 day duration, all the 4 days' 									

Answer 6:

(i)	Initial Solut	ion by the	11	(3				
		F1		F2		F3	Demand	
	D 1	3	35	6	25	7	60/25/0	
	D 2	8		5	30	7	30/0	
	D 3	4		9		11 30	30/0	

Supply	35/ 0	55/2 0 5/	30/0	120	
Supply	35/	55/2 0	30/0	120	

(ii) This solution is degenerate because number of occupied cells (=4) are *less than* required number (=3+3-1)

Degeneracy is certain when in any allocation (earlier than the last allocation), the row and column totals get simultaneously fulfilled.

In this problem, degeneracy arises as allocation at cell D1F2, *simultaneously vacates* the row and column totals. (2 marks)

(iii) If we consider $u_1 = 5$ instead of $u_1 = 0$ for $u_i + v_j$ matrix, Δ_{ij} matrix would remain same. Since for each *occupied cell* in the table, the row value (u_i) and column value (v_j) equals the cost element Cij. (2 marks)

(iv) Initial Solution by the North- West Corner Rule

(3 marks)

	F1	F2	F3	Demand
D 1	3 35	6 25	7	60/25/0
D 2	8	5 30	7	30/0
D 3	4	9	11 30	30/0
Supply	35/ 0	55/3 0 0/	30/0	120